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CURVATURE MEASURES
AND GENERALIZED MORSE THEORY

JOSEPH H. G. FU

1. Introduction

1.1. In studying the differential geometry of a hypersurface M” in eu-
clidean space E"*! it has often proved fruitful to view the integral of the
Gauss-Kronecker curvature (or “Gauss-Bonnet integrand”) as an integral
instead over the unit sphere S”: that is, as the area of the Gauss map
v: M" — S". A notable success of this device is the work of Chern-
Lashof relating the total absolute curvature of (compact) M to the sum of
its Betti numbers. In this and other works (e.g. [1]) the further step has
been taken to identify the value of the integrand on the sphere, at a point
v € §", with the sum of some topological indices associated to the “height
function” A, (x) := x -v, x € M, and to the points of v~!(v). In fact these
latter points are exactly the critical points of this height function, and the
topological index at each point is (—1)*, where 4 is the Morse index of 4,
there.

The resulting expression for the curvature, in terms of these height func-
tions, possesses at least one other theoretical advantage: namely, that the
indices above may exist in a generalized sense even when the surface M"
is highly singular. Thus it is natural to define the Gauss-Kronecker curva-
ture (as well as certain other invariants) by this approach. This has been
previously suggested by [10].

In this paper we will carry out a new treatment of an existing theory
of “generalized curvature” in this way, namely Federer’s theory [4] of the
curvature measures of sets of positive reach. A set of positive reach is
a closed subset 4 of a euclidean space E**! such that if a point x lies
sufficiently close to A, then there is a unique point £(x) € 4 minimizing
the distance to x. (Any compact C! manifold or closed convex set has
this property.) Federer showed that, for small » > 0, the volume of the
tubular neighborhood A4, := {x : dist(x, A) < r} is a polynomial of degree
equal to the ambient dimension (“Steiner’s formula”). He then defined
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the curvature measures of A in terms of the coefficients of this polynomial,;
these are Radon measures ®;(4,), i =0,--- ,n+ 1.

Our main theorem expresses the measure ®y(A4,-) as follows. Let f
be a smooth function defined on a neighborhood of A, and suppose for
convenience that 4 is compact. One may identify certain points of A as
nondegenerate critical points of the restriction f|A, and also define the
index A = A(A, f,p) of f]A at such a critical point p. If f|A is nice (a
“Morse function™), then just as in smooth Morse theory (cf. [12]), the
set f~!(—oo, f(p) + €1 N A has for small ¢ > 0 the homotopy type of
f~1(=o0, f(p) — €] N A with a cell of dimension A attached. Now let f be
the “height function” x — x - v, for a vector v of the unit sphere S”, and
put 1(4,v,p) := (—1)* with A as above. Our theorem then states that for
any Borel set K

(n+1)a(n+1)(D0(A,K):/ S 14,0, p)d# ",
Sll

DPEKNA

where a(n + 1) is the volume of the unit ball in E**!, and #" is the
n-dimensional Hausdorff measure. Actually we will also give similar ex-
pressions for all of the curvature measures ®@; (Corollary 6.3).

As an application we will prove a generalization of a theorem of Zihle,
which extends the curvature measures in a geometrically satisfying way to
certain locally finite unions of sets of positive reach.

As a final remark let us point out that this subject is less isolated than it
may appear. For example it is a fact that under remarkably unrestrictive
hypotheses on a compact set S ¢ E**1, the closure of the complements
of the tubular neighborhoods S, have positive reach-for example, for any
such S C E3 this conclusion holds for all € R outside a compact set of
measure zero (cf. [6]). Thus it is possible to analyze the curvature of the
set .S by means of these tubular approximations. The sequel to this paper
will carry out this project in case S is a subanalytic subset of E"+!,

2. Basic facts and definitions

Let E**! be the euclidean space of n + 1 dimensions, with the usual
metric d(x,y) = |x — y| and “dot product” x - y. The interior of a set
A C E*! will be denoted by A4°, its closure by A.

2.1. Definitions: sets of positive reach. Let A ¢ E"*l. We define
d4:E™! S Rby ‘

dy(x):=inf{|x — p|:p € A}.
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Put
ma(x):={p€A:|x—p|=dsx)},
and set forr > 0
A, :=d;'([0,7]).
Then (cf. [4]) we define '

Unp(4) := {x € E""! : m4(x) is a singleton},

and distinguish the function &, : Unp(4) — A4 by {&4(x)} = n4(x). Fi-
nally, if p € A4, then

reach(A4, p) := sup{r: B(p,r) C Unp(A4)},
- where B(p,r) := {x:|x —p| <r}, and
reach(4) := inf{reach(4, p) :€ A}.

We will also use the notation B(p, r) for the closed ball {x : |x — p| < r}.

Note, for example, that any compact hypersurface of class C-!, or any
body bounded by such a hypersurface has positive reach (cf, §3 and [4,
4.19]).

2.2. Definitions: weights and measures. We put L¥ to be the Lebesgue
measure in E¥. For each o > 0 we let #* be the Hausdorff measure of
dimension « (cf. [5, 2.10.2]). These last-named measures are of course de-
fined on any metric space; on EX, #* coincides with L¥. We also identify
the constants

alk) =L({x e E* : |x| < 1}), p(nk):= M,

a(n)(;)
whenever »n, k are nonnegative integers, and k < n.

2.3. Definitions: tangents and normals. Let 4 C E™. We define the
tangent cone to A at a point p € A by

Tan(4,p) := {v cE™: lirﬁ(i)nf dyp+tv)/t= O} ,
and the normal cone to A at p as the dual to the tangent cone, namely
Nor(A4,p) :={w € E" :w-v <0 for all v € Tan(4, p)},

(cf. [5, 3.1.12]). We identify also the unit normals nor(4, p) := Nor(4,p)N
Sm=1 = {w € Nor(4,p) : |w| = 1}.
The k-density of A at p is given by

(4, p) == lim#“(4n B(p, 7)) /a(k)r*,
(compare [5, 2.10.19]).



622 . JOSEPH H. G. FU

If p € M c E"*! isa C! submanifold, then we identify the tangent space
T,M with the parallel plane Tan(M, p) through the origin. In particular,
if M* c E**! is a hypersurface and v : M” — 8" is the Gauss map, then
.M = T,»S".

2.4. Definition and remarks: Lipschitz manifolds. An m-dimensional
lipschitz manifold is a paracompact metric space M such that there is a
system of open sets U, covering M and, for each «, a bilipschitzian home-
. omorphism ¢, of U, onto an open subset of E™. A [ipschitz submanifold
of a metric space X is a subspace of X which is a lipschitz manifold under
. the induced (not the intrinsic) metric. Note, for example, that with this
definition the singular plane curve x2 = y3 is not a lipschitz submanifold
of E2,

If M is a k-dimensional lipschitz submanifold of a euclidean space E™,
then for #*-a.e. p € M the cone Tan(M,p) is in fact a k-dimensional
plane. For by Rademacher’s theorem [5, 3.1.6] the inverse of each coor-
dinate map ¢, : U, — EX is L*-a.e. differentiable as a map into E™. Since
@, is lipschitzian, it follows that any existing derivative D[¢; '](x) is non-
singular; and if p = ¢ !(x), then the two tangent spaces above coincide
with the image of EX under D[p; '](x).

2.5. Definitions and remarks: normals to sets of positive reach. Suppose
that A c E**! is a compact set with reach(4) > 0. Then for each p € 4:
(a) nor(4,p) = {(x—p)/|x—p| : x € &' ()} (cf. [4, Theorem 4.8(12)];
(b) the tangent cone Tan(A4, p) is the cone dual to Nor(4, p), i.e.,

Tan(4,p) :={v:v-w <0 for all w € Nor(4,p)} (loc. cit.).

Furthermore if we put nor(A4) to be the “generalized bundle” of unit
normals

nor(A) := {(p,v) : v €nor(4, p)} C E™! x 8" ¢ E**! x E"+1,

then this “bundle” is an n-dimensional lipschitz submanifold of E2"+2 (cf.
[15, 1.1.7]). This is seen easily if we note that the sets d;!(r) are n-
dimensional submanifolds of class C! (or even C!!) for 0 < r < reach(4)
(cf. [4, Theorem 4.8(3),(4),(5),(8)]), and that the map v, : d;!(r) —
nor(A4), given by y,(x) := (&4(x), [x — £4(x)]/ d4(x)), is a bilipschitzian
homeomorphism of such d;l(r) onto nor(A4). (The inverse map is given
explicitly as (x,v) — x + rv.) In particular Tan[nor(4), (p,v)] is an n-
dimensional plane for #”-a.e. (p,v) € nor(4).

2.6. Repeated use will be made of the following fundamental property
of sets of positive reach.
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Lemma (Federer). If A is a set of positive reach, p,q € A and v €
nor(A,p), then

v-(q—p) < l|g - p|*reach(4). .

Proof. This is conclusion (7) of [4, Theorem 4.8].

2.7. We will often think of the euclidean space E2"*2 as the product
space E**! x E**!. With this representation we will denote the projections
onto the first and second factors by n; and =.

3. Cb! Morse theory

3.1. In this section we indicate briefly how it is possible to extend the
elementary notions of differential geometry and Morse theory to a Cb!
hypersurface in E*+1,

Definition. Let M” C E"*! be an oriented C' hypersurface, and let
v : M — §" be its Gauss map. Then M is of class C1:! iff v is lipschitzian.

3.2. Proposition. The hypersurface M is of class CY' iff, given any
D € M, there is a neighborhood U C E**! of p such that under some system
of isometric coordinates on U the set M N U appears as the graph of a C!
Sfunction with lipschitzian gradient.

Proof. The proof is trivial.

3.3. Remarks. If B c E"*! has reach(B) =: R > 0, then for 0 < r <
R the naturally oriented hypersurface dg'(r) is of class C'!. This is a
consequence of [4, Theorem 4.8(3) and (8)].

The Morse theory of a set of positive reach developed in the next section
will be based on the approximation by these smoother sets. The reader will
note that the C%' Morse theory differs hardly at all from the C? or C®
theory, with the difference that certain points of a C'-! hypersurface cannot
by their very nature occur as nondegenerate critical points. This distinction
will have greater significance after passing to the general “positive reach”
setting.

3.4. Let us now consider the Gauss map v : M — S" as a lips-
chitizian map between C! manifolds. By Rademacher’s theorem this
map - is differentiable at #"-a.e. point of M; we denote the set of points
where the derivative exists by Sm(M), the set of smooth points. Given
a map f between C! manifolds, we denote by df(p) its derivative at
those points p where this is defined. For p € Sm(M), the derivative
dv(p) : T,M — T,;)S" exists. (Recall however that with our conven-
tions these two tangent spaces are identical to one another.)
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At each smooth point p of M we define the second fundamental form
II(p) to be the bilinear form on T, M given by

)&, n) =& dv(n).

As in the smooth case,

3.5. Proposition. II(p) is symmetric.

Proof. Given &, n € T,M, by 3.2 there are continuous vector fields
&, : M — E*! defined in a neighborhood of p in M and tangent to
M with &(p) = &, 7(p) = n, which moreover are differentiable at the
point p. Writing these out in coordinates, since the second derivatives
are symmetric whenever they are defined (cf. [5, 3.1.11]) it follows in the
usual way that the vector [, 7)(p) = dA(p)(&) — d&(p)(n) is well defined
and tangent to M at p. Applying the Leibniz rule to the functions & - v
and 7 - v we find that

I(p)(&, n) — I(p)(n,&) = v(p) - £, 7)(P) = O.

3.6. Now let f: E*1 — R be a C* function, and for each x € E"+!
let H f(x) denote the bilinear form on E*+! defined by the Hessian matrix
of second derivatives at x.

Definition. A point p € M is a critical point of the restriction f|M
iff grad f(p) is a multiple of v(p). If such a point additionally belongs to
Sm(M), then the Hessian of f|M at p is defined to be the bilinear form
on T, M given by :

Hy f(p) := Hf(p)|T,M — (grad f(p) - v(p))I1(p).

3.7. Remarks. If p is as above and & € T, N, then for any C! curve o
with «(0) = p and &/(0) = ¢ we have

foa(t) - f(p) = Huf(p)(&EE? /2 + o(?)

as ¢t | 0. Furthermore, if ¢ : E* > U — M is a C! diffeomorphism onto
a neighborhood of p in M such that ¢~!(p) = 0 and ¢ (as a map into
E”*1) is twice differentiable at 0, then fo¢ is twice differentiable at O with
Hessian form given by

H(f o 9)(0)(&,n) = Hy f(p)(d9(0)(E), dp(0)(n)).

3.8. Definition. A critical point p of the restriction f|M will be called
nondegenerate iff grad f(p) # 0 and the bilinear form H,,f(p) is nonde-
generate. The index of p is the number of negative eigenvalues of Hy, f(p).

3.9. Given a &R letus put M%:=Mn f~(~oc0,a].

Theorem. Let the CY! hypersurface M be compact. Suppose that p is
a nondegenerate critical point of f|M of index A, with f(p) = ¢, and that
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S~ Y(c) contains no other critical points of f|M. Then for ¢ > 0 sufficiently
small, M has the homotopy type of M<~¢ with a A-cell attached.

Proof. For p € M let us denote the projection of grad f{(p) onto T,M
by

grad,, f(p) := grad f(p) — [v(p) - grad f(p)]v (p)-

Let U c E"! be a neighborhood of p such that U N M is in suitable
coordinates the graph of a C! function g : E* D U’ — R with lipschitzian
derivative. Since p € Sm(M) by hypothesis, g is twice differentiable at the
point x, corresponding to p. Let p be a smooth function on E"*!, equal to 1
outside of U and vanishing in a neighborhood of p. Then V' := —pgrad,, f
is a lipschitzian vector field on M such that V - grad,, f < 0, with strict
inequality in f~!(¢)\U. The basic theory of ordinary differential equations
(cf. e.g. [8]) asserts that V' integrates to give a continuous flow on U,
which for some ¢ > 0 deforms M“*¢ into M~ U [M**¢ N U]. But in the.
coordinates above on U the function x — f(x, g(x)) mapping U’ — R is
differentiable everywhere and by 3.7 has a nondegenerate critical point of
index A at the point xy. The theorem now follows in the usual way from
the result of [11].

3.10. Actually our interest lies not so much in the Morse theory of a
CU! manifold M but rather in that of a body in E**! bounded by such
a manifold. If M is smooth then this remains classical (cf. [Morse and
Cairns, Chapter 8]). Such a body, if compact, has positive reach. The
next result is most naturally given in this more general context.

3.11. Definition. Let 4 C E"*! be compact with reach(4) > 0, and let
as before f : E"t! — E be a C™ function. A point p € 4 is a regular point
of the restriction f]A iff: either p € A° and grad f(p) ¢ 0, or p € bdry 4
and —grad f(p) ¢ Nor(4,p). A value ¢ € R is a regular value of f|A iff
every point of AN f~!(c) is regular. A point or value is critical for f|A iff
it is not regular.

Thus in the particular case when A4 is a body bounded by a C"! hy-
persurface M, oriented so that the normal » : M — S” points out of 4,
a boundary point p is critical for f|A4 iff the vectors grad f(p) and v(p)
point in opposite directions (or else grad f(p) = 0).

3.12. Let 4 and f be as above; then for ¢ € R we put 4A° := AN
S (~o0,c].

Proposition. If ¢ is a regular value of f|A, then for all ¢ > 0 small
enough the spaces AT and A°~¢ are homotopy equivalent.

Proof. Let F(x,t) be the flow of the vector field — grad f/|grad f|?, by
hypothesis defined for small ¢ and x in some neighborhood of 4N f~!(c).
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Then 4 (f o F(x,1)) = —1. Let a neighborhood U of f~!(c)N 4 in E™,
and a constant K € (0,1) be given such that, if x € U, p = &4(x) and
w € nor(4, p), then

—w - grad f(x) < K|grad f(x)| < | grad f(x)|.

These exist by the regularity hypothesis and the fact that nor(4) is compact.
The flow &, o F is defined whenever F(x,t) € Unp(4). Since F is
continuous there are 6’ > 0 and a neighborhood ¥V’ of f~!(c)N A such that
in fact F(x,t) € UNUnp(A4) whenever |¢t| < ¢’ and x € V. Then we have
for such points ‘

f(Cao F(x,0) = f(x) = f(EaleF (x,1)) — S(F(x,0) + f(F(x,1)) = f(x)

1
= dy(F(x.1)) /0 (—w) - grad f(s&4 0 F(x, 1)
+ (1 —$)F(x,1))ds,

where w = (£40 F(x,t)—F(x,1))d4(F(x,1))~! € nor(4,&40F(x,t)). Now
there are a neighborhood V" C V' and a constant §” < &', such that if
x € V" and [t| < 8", then the segment ¢ joining &40 F(x,t) to F(x,1) lies
within U, whence

SE4oF(x,1)) - f(x) < KdA(F(x,f))Sl;plgradfl - L

Now if y := F(x,t) ¢ A, then we have for F(x,t1)e U
4. _ 0 =840) (—grad f(v))
il 01 = = 0 Torad 7O

- T:%W, w € nor(4,&4(y)),

< K|grad f(y)I”".

Thus
dqo F(x,t) < Ktsup{|grad f(¥)|™' : y € F(x,[0,1])},
fCao F(x,8) - f(x)

< Kztsup{%g{%%f—j%;: X € a,yeF(x,[O,t])} -t

Let 6" > 0 be so small that
sup{| grad f(x)|/| grad f(»)| : |x — y| < 20"} < K~1.
If now 0 < ¢ < 6"/ infy | grad f|, then for x € 4 we have
dqo F(x,t) <|F(x,t)— x| < 8",
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whence the segment ¢ above lies within ¢’ of F(x, ¢). Thus the right-hand
side above < Kt — ¢t < 0.

Thus there are ¢ > 0 and § € (0,8") such that if x € V' N A°*, then
Eqo0F(x,8) € A%, If additionally ¢ is so small that f~![c—2¢,c+e] C V,
then using a mollifier the deformation &4 o F extends to a homotopy of
AT into A€,

3.13. Remark. Using the same method together with a mollifier one
may prove the somewhat more general result:

Let ¢ € R, and K C A be a compact subset such that f~!(¢)NK consists
only of regular points of f|A4. Then for all small ¢ > O there is a homotopy
p At x [0,1] — A€ such that for each x, f(p(x,1)) < f(p(x,0)) and
p(K,1) C A%,

3.14. The next result is the main goal of this section and will be an
important tool in the next.

Theorem. Let A C E" be a compact set bounded by a C'-' hypersur-
face M, and let f : E**! — R be a C* function. Suppose that p € M,
f(p) =: ¢, is a critical point of the restriction f|A and the only such point
within f~'(c) N A. Suppose further that, considered as a critical point of
fIM, p is nondegenerate of index ). Then for all ¢ > 0 small enough the
set A°*¢ has the homotopy type of A°~¢ with a A-cell attached.

Proof. The case A = M having been dealt with in 3.9, we may assume
that 4 = 4°. By hypothesis, grad f(p) = —|grad f(p)|v(p), where v(p) is
the outward unit normal to A at p. For convenience of expression let us
choose coordinates so that the vector v(p) points downward. Then there
is a convex neighborhood U c E**! of p such that 4° N U lies above
MnNU. Itis clear from Proposition 3.2 that U may be taken so small
that pushing directly downward gives a deformation retraction of AN U
onto M NU. Let V be a second convex neighborhood of p with ¥V c U;
then we can mollify the last deformation so that its restriction to ANV
is a retraction onto M NV, and so that it leaves (bdry U) N A4 fixed. Thus
the mollified deformation may be extended to a deformation of all of A,
leaving A\U fixed. Consider now, for small ¢ > 0, a deformation asin 3.13
with K = A\V. Concatenating these two deformations we get a retraction
of A¢*¢ into A°~¢U[M N V). The result now follows from the proof of 3.9.

3.15. Definition. Let A C E"*! and f : E"*! — R be as in 3.14. The
restriction f|A4 is Morse iff each set AN f~!(c) contains at most one critical
point of f|A4, and each such point is nondegenerate.

3.16. Corollary. Let A, f be as above, with flA Morse. Then A has
the homotopy type of a CW complex, with one cell of dimension 2 for each
critical point of index .
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Proof. The proof is just as in [12, Chapter 3]. (Of course we still have
not shown that such Morse functions exist.)

4. Morse theory on a set of positive reach

4.1, Throughout this section A will denote a compact subset of E"+!
with R := reach(4) > 0. Our goal is to develop the Morse theory of the
restriction to 4 of a C* function f : E**! — R. Our strategy is to compare
the behavior of f on A to the behavior of certain functions f, associated
to the tubular neighborhoods A4,, 0 < r < R; the latter spaces are subject to
the theory of §3. The topological changes of 4 through the changes in the
levels of f are equivalent to those of A, in the levels of f;; meanwhile the
algebraically defined index A of f, on M, := bdry 4, agrees with a similar
invariant for f on nor(4). Thus the Morse theory of f|4 can be stated
without reference to the approximations f, and A,.

4.2. Letting M, :=d;'(r),0 < r < R, be the C"! hypersurfaces bound-
ing the tubes A,, we put v = v, : M, — S" for their Gauss maps. Recalling
the natural bilipschitzian homeomorphisms

v, :nor(4) - M,, v,(p,v):=p+rv,
@ M, — IlOI'(A), QPr = Wr_la ¢,(X) = (éA(X)V(X)),

we have the

Proposition. Let (p,v) € nor(4) and 0 < r < R. The following three
conditions are equivalent.

(i) t := Tan[nor(A), (p,v)] is an n-dimensional plane in E**+2.
(ii) @, is differentiable at w,(p,v).

(iii) v, is differentiable at y,(p,v).

Proof. (i)&(ii). As the weighted addition map (¢, w) — ¢ + rw is dif-
ferentiable everywhere in E*+! x E"+1, it follows that if (i) holds, then at
(p,v) the restriction of its derivative to the space 7 is well defined and
linear. Since y, is bilipschitzian, this restriction is nonsingular, and it
follows that the derivative of ¢, aty,(p,v) is the inverse of this restriction.

Conversely, if ¢, is differentiable there, then the derivative is nonsingu-
lar, and T is its image. :

(ii)<>(iii). = is immediate from the expression above for ¢,. To get <,
we notice also that if x € M,, then £4(x) = x — rv(x). q.ed.

Such a point (p,v) will be called a smooth point of nor(A4).

4.3. Proposition. With the hypotheses above, if we put xo := ¥,(p,v),
then the following hold:
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(a) Any & € T M, has the form & = t + ra for some (1,0) € T.

(b) If &€ has this form, then dv(xy)(£) = 0.

Proof. The proof is immediate.

4.4. Proposition. Suppose that (p,v) € nor(A) and that conditions 4.2
(i)~(iii) hold. If (t,6) and (v',¢') € T C E*"*! x E**!, thent-6' =1 - 0.

Proof. Let 0 < r < R, and put xj := w,(p,v). Consider the symmetric
bilinear form II,(xy) := I, (xp). Then expressing &, & € T, M, as in
4.3(a),

10,(x0)(&, &) = I (x0) (T + ro, ¥ +7d”)
= (t+r0)- dv(x)(v +ra’) = (v +r0)- 0",

By symmetry this quantity can also be expressed as (7’ +ro’)- 0.
4.5. Definitions. Suppose that conditions 4.2(i)-(iii) hold. Define a
vector subspace of E**! by

Ty = Ti(p,v) := n(Tan[nor(4), (p, v)]).

Now define the second fundamental form 114(p,v) as the symmetric bilin-
ear form on T; given as

I (p,v)z,7)=1-0,

where (7/,0’) € Tan[nor(4), (p,v)].

Note that if 4 is a C! hypersurface M, then T, = T,M, and the
definition of II,s just given agrees with the previous one. Now if fisa C*®
function, and p is a critical point of f|A, with |grad f(p)|-v = — grad f(p),
v € nor(4, p), and such that conditions (4.2)(i)-(iii) hold at (p,v), then
we define a symmetric bilinear form on 7,(p, v) by

Hy(f(p) := Hf(p) | Ty(p,v) + | grad f(p)IL4(p, v).

Under these circumstances we will say that p is a nondegenerate critical
point of f|A4 iff H, f(p) is nondegenerate, and we define the index A(f, A, p)
to be the number of negative eigenvalues of this form.

4.6. Let p € bdryA be a nondegenerate critical point of f|A4, with
v = —grad f(p)/|grad f(p)| € nor(A4,p), and for 0 < r < R let f; be the
C* function f.(x) := f(x — rv).

Proposition. If r > 0 is small enough, then w,(p,v) is a nongenerate
critical point of f,|A, with index

MSrs Ar, wr(,v)) = A(S, 4, D).

Proof. That p, := w,(p,v) is a critical point of f;|A4, follows at once
from the definition and the fact that v(p,) = v. By 4.2, p, € Sm(M,).
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Thus for ¢, ¢’ € T, M, we may compute the Hessian

H, f,(p:)(&,&') = Hf(p,)(&, &) + | grad f;(pr)lllr(pr)(é’é))
= Hf(p)(&, &) +|grad f(p)IIl,(p,)(¢, &)
=Hf(p)(t+ro,7"+ro’) + |grad f(p)|(t +ro) - ¢’

by the proof of 4.4, where & = 1+ ro, & = v + ro’, (1,0), (,6') €
T, nor(A). Finally we may write this last expression as

Hyf(p)(r,T) + r{Hf(p)(0,7") + Hf(p)(7,0") + | grad f(p)lo - 0"}
+r’Hf(p)(o,0"),

which defines a bilinear form F, on (7, 0), (t',¢6') € T := T,, nor(4), the
pullback via y, of H, f,(p).

Now put T3 := {6 € E*"! : (0,0) € T}, and let T} be a subspace of T
complementary to 7 (thus 7} =~ 7). Writing F, in matrix form, with a
basis adapted to the decomposition T = T} @ T, (independent of r),

’ F = A1+rA2+r2A3 rC
e rC! r|grad f(p)|I +r*B

where the 4;, B, and C are fixed matrices (i.e., independent of r), and A,
is the pullback of H, f(p) under the isomorphism 7} ~ T;. Thus,

det F, = (det 4;)| grad f(p)|"~*r*~* + O(r*~**!)

asr | 0, 2 := A(f, 4,p); as the leading term is by hypothesis # 0, this
determinant # O when r is small enough. That is, the critical point p, is
nondegenerate.

To evaluate the index of F,, let N be a maximal subspace of 7} on
which 4, is negative definite, and let P C 7} be a complementary subspace
on which 4, is positive definite. Certainly dim N = 4. Furthermore, for r
small enough the form F,|T} = A, +rAy+r?A; remains negative definite on
N and positive definite on P. At the same time F,|T; = r| grad f(p)|I +r*B
is certainly positive definite for all small r. Now if £ € P and n € T>, then

Fo(&,8) — A1(&,&) > alé]* >0,
F(&,m) < brigf|nl,
F,(n,n) = r|grad f(0)| In|* + O |n|* > rejn|* > 0

as r | 0, for some positive constants @, b,c. Thus the Cauchy-Schwartz
inequality

F(&,m)? < B2rYEP|n? < acr|EP|nl? < F (& E)Fx(n, 1)
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holds for all such &,  provided r < ac/b?, which implies that F, is positive
definite on P & T,. Thus for such r the subspace N is a maximal subspace
on which F, is negative definite, dim N = 4. But the dimension of such a
subspace is the index of F,.

4.7. Proposition. Suppose that c is a regular value of f1A. Then forr >
0 small enough the spaces A° := AN f~'(—o0,c] and A := A,N f;~(—o0,c]
are homotopy equivalent.

Proof.  Modifying f if necessary away from the compact set 4 we may
assume that f is proper and that grad f never vanishes on f~!(¢), and
therefore that grad f, never vanishes on f~!(c). Thus by [4, 5.19 and
4.13],

R’ :=reach f~!(—o0, c] = reach f~!(—o0,¢] > 0.
Furthermore [4, 4.10] together with the hypothesis that ¢ is a regular value
of f|A (cf. Definition 3.11) implies that there is # > O such that

reach(4°) > - min{R, R'},
reach(4¢) > - min{R —r,R'}.

Now it is clear that, in the Hausdorff metric 4, lim, .o A7 = A4°. There-

fore we may take r > 0 so small that
h(A°, AS) < min{reach(A), reach(A4¢)}/2.
For such r we have
A¢ C Unp(45), AS Cc Unp(4°).
Letting &€ and £¢ be the projection maps onto these sets, we have further-
more for all x € 4° and y € A¢
€€ 0 &7 (x) — x| < reach(A°),  [&7 o<“(y) — y| < reach(A7).
It follows that the map &€ 0 &¢ : A° — A€ is homotopic to the identity map
of A° via the homotopy H : A° x [0, 1] — A¢ given by
CH(x, 1) = E(6E° 0 E(x) + (1 — D)x).

Similarly, the map &¢ o &€ : A — AS is homotopic to the identity of Af.

4.8. Theorem. Suppose that p € A is a nondegenerate critical point of
fl4 of index A, f(p) = ¢, and that f|A has no other critical points within
AN f~Yc). Then for all ¢ > 0 small enough the set A*¢ has the homotopy
type of A°~¢ with a A-cell attached.

Proof. Put v := —grad f(p)/|grad f(p)| € nor(4,p). If r > 0 and
¢ > 0 are small enough, then all values within [¢ — &, ¢ + €]\{c} are regular
values both of f|4 and of f;|4,. By 4.6 we may take r so small that
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w,(p,v) = p + rv is the unique critical point of f;|4, within 4, N f~!(c),
and so that this critical point is nondegenerate of index 4. By 3.12 and
3.14, for such r and ¢ each set A5*¢ has the homotopy type of 4:~¢ with a
J-cell attached. But by 4.7 A°*¢ is homotopy equivalent to A5+,

4.9. The definition of a Morse function f on a compact set 4 of positive
reach is the same as 3.15.

Corollary. If f|A is Morse, then A has the homotopy type of a CW
complex, with one cell of dimension A for each critical point of index A.

In the next section we will see that such Morse functions are plentiful.

5. Almost every height function is Morse

5.1. Let a compact set 4 ¢ E"*! be given with reach(4) > 0. For each
unit vector v € S” we denote by £, the height function A,(x) := x - v.
In this section we will prove:
Theorem. For Z"-a.e. v € S", the restriction h,|A is Morse.
5.2. Lemma. Let (p,v) € nor(A4), with (tr,0) € Tan[nor(4), (p,v)].
Then
() im ¢—p w-(q—p)lg—p|~' =0, and
wenor(4,q)
(i) z-v=0.
Proof. (i) By compactness it is enough to consider a subsequence (g, wy)
€ nor(A) with ¢, — p, and such that

Jim (gi — p)lgi — p|”" = u € Tan(4, p),
lim w;, = wy € nor(4, p).
k—o00

By continuity and the definition of the normal cone,
lim wy - (g — p)lgx — p|™' = wo - u < 0.
k—o0
On the other hand Lemma 2.6 gives for each k
Wi - (@ — P)|ax — p|™" 2 —Igi — pl/2reach(4),

whence the limit above > 0.

(ii) By the definition of the tangent cone, if 7 # 0, then a sequence
(g, wy) € nor(A4) may be found such that (g — p)|gx — p|~' — /|| and
wy — v = O(|q, — p|)- By (i) we have

0= klif{.lo wk - (qk — p)lax — p|™"
= lim [v + O(lax — pD1- /|| + o(1)]

=v-1/|1|
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5.3. Corollary. Suppose that
B:(a,b) —bdryd, y:(a,b)—S"

are continuous, with y(s) € nor(4, B(s)) for all s € (a,b). If B’'(so) exists,
then y(so) - B'(s0) = 0.
Proof. If B’(so) = 0, the result is trivial. Otherwise, by 5.2(i),

0= lim y(s) - (B(s) — B(s0))IA(s) — Bso)| ™!

= (s0) - B(s0)|8'(s0)| .

5.4. Theorem. Let N C E"! x §* be compact, and (", n)-rectifiable

(cf. {5, 3.2.14]). Suppose that
lim w-(p-q)lp-q7' =0
(g, w)EN
for all p € E**\. Then for #"-a.e. v € S" the following hold:
(i) NN nz‘l(v) is finite,

(i) Ifp,ge m[Nnny'(v)] andp # q, thenp -v # q - v.

Proogf. (1) The approximate Jacobian ap J,(7;|N) (cf. [5, 3.2.1]) of the
restriction of 7, to N is clearly < 1 wherever it is defined. Thus by the
coarea formula {5, 3.2.20]

oo>Z”"(N)2/ ap Jy (1| N) dF™ =/ card{n; (v) N N1d#",
N Sn

so the last integrand is a.c. finite.

(ii) By [5, 3.3.39] or [13, 11.1], there is a countable collection M! of C!
submanifolds of E#+! x $” such that f* := N\ |J M| has measure #"(F') =
0. Applying the coarea formula to the maps n;|M; we find that for a.e.
vest

Jn(m2|M{)(p,v) # 0
for all (p,v) € n; '(v) N M!. Thus we may define new submanifolds (open
subsets of the M]) by

M; == M/ N {(p,v) : Jo(m2|M)(p, v) # O},

so that if G := N\|J; M;, then #"(n,(G)) = 0. Refining the cover {M;}
as necessary we may assume that the closure A; of each submanifold is
compact, and that the restriction of n; to M; is one-to-one.
We want to show that
C:={veS": there are p,g € m[r; ' (v) N NNUM;]
withp#£gandp-v=qg-v}
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has #"(C) = 0. For each pair of indices (i, j), i # J, let us put
Cij:={v € 8" : there are p; € mi[n;"'(v) N M, N N],
k=1i,j, pi#pjand p;-v =p; v}
Since each 7,|M; is one-to-one; we have C = Uix ; Cij. We will show that
for every (i, j), i # j, the density ©"(C;;,v) = 0 at each v € C;;; this will
imply that Z#"(C;;) = 0 (cf. [15, 2.10.19]), and therefore that #"(C) = 0.
Choose any one of the C;; and call it D; we may assume that i = 0,
Jj=1. Let v € D and let p, g be distinct points with p-v = ¢ - v and
(p,v) € NN M,, (g,v) € NN M.
Letvy,e D, k=1,2,...,withv, — v;let p,qr, Kk =1,2,..., be sequences
of points of E**! with
(Prsvk) E NN My, (qr, V) € NN M,
and py - Ux = gy - V. Since 7, is one-to-one on the compact sets M, and
M, it follows that p, — p and g, — ¢. The condition J,(m2|M;) # 0
implies that
limsup |vx — v|~Ypr —p| < 00, limsup|vy — v|~tgx — ¢q| < oo

—00 — 00

Combining these relations with the hypothesis we find that
lim v - (o — p)lve —v|™' = lim vy - (g — @)lve —v|™' =0
k—c0 k—s 00

(see Figure 1).
Uk

v
Di p L

~ v (p = p)lvg — o)}

FIGURE 1

Since py - v, = gy - v the difference of the left and middle expressions
is
lim v - (p = g)lvx —v|~' = 0.
k—o0
Geometrically this means that the sequence of the v, is asymptotic to
the great hypersphere of S” perpendicular to the vector p — g. As the
sequence was arbitrarily chosen subject to v, € D, v, — v, it follows that

A" DN B(v,r))=o(r")
asr | 0. That is, ©"(D,v) = 0 as claimed.
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Proofof 5.1. By 5.2, the set N = nor(4) satisfies the hypothesis of 5.4.
It follows that for a.e. v € S” the height function A,|A4 has a finite number
of critical points, and that no two such points correspond to the same
critical value. It remains to be seen that, for a.e. v € S”, if (p,v) € nor(4),
then the conditions of 4.2 hold at (p,v) and that the second fundamental
form I14(p,v) is nondegenerate on the vector space 7, (p,v). Recalling the
coarea formula

#7(U) = / Ju(72{ nOT(4)) (2, v) A7 (p, ),

;' (U)Nnor(A)

U c S", the first assertion holds since the conditions of 4.2 hold #"-a.e.
in nor(A4). To prove the second assertion the coarea formula implies also
that for #"-a.e. v € S*, J,(n2|nor(A))(p,v) # O at all points (p,v) €
nz“(v) Nnor(A4). That is, if (7,0) € T, nor(A4) and 7 # 0, then 0 # 0. It
follows that T»(p,v) := {0 : (1,0) € T, nor(4)} = T,,S"; and by 5.2(ii),
Ti(p,v) ¢ T,S". Thus there is 7’ € Ti(p,v) with (7', 7) € T,,nor(A4),
whence
Iy (p,v)(7,7') = |z]* # 0.

6. Curvature measures

6.1. Here at last is the main theorem of this paper. Given v € S"
we will abbreviate the notation for the index of the height function 4, by
Alv, A, p) := A(hy, A,p).

Theorem. Let A C E"! be a compact set of positive reach, and let
Dy(A, ) be the Gauss-Kronecker curvature measure of A (¢f- [4, 5.7)). Then
for any Borel set U C E"*1

®o(4, U) = [(n + Da(n + 1)]—1/ S (—1)iean) gy,
S"

peEU
—vEnor(4,p)
Proof. For 0 < r < reach(4) let us put U, := f;l(U) N M,. By [4, 5.8]
we have
(1) Dy (A,, U,) =/ det1l,(p) d#Z"p.
Ur

Let F, : S® — Z be the function
F)= Y (-1,

peEV=1(w)NU;
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If we notice that detll,(p) = J,v(p) (the Jacobian determinant of the
Gauss map v : M, — S"), we may apply the coarea formula to (1) and
obtain

®o(4,, Uy) = [(n+ Da(n+ )] / > signJw(p)dZ v

peV-Y )Ny,
=[(n+ Da(n+ D17 | F(v)d#™v.
Sn

But for each v € §” the critical points p of 4,|A4 are in one-to-one corre-
spondence with the critical points p + rv of k,|A, (where r € (0,reach(A4))
is fixed). Thus for each v € $”

F,(v) < card[v~}(v) N U]
= card[z]'(U) N =5 1(v) N nor(4)].
Applying the coarea formula to the function 73 |[n] 1(U)nnor(4)] we find

that the last expression defines an integrable function of v € §". Mean-
while by 4.6 and 5.1 F,(v) tends to

B@):= > (-1 forae veS,

peU
vEnor(A4,p)

so the dominated convergence theorem gives

(n+ Da(n+ )llmCDo(A,, U) = rhm/ F(v)dZX"v

= [ Fo(v)dZ"v.
S»

But by [4, 5.6-5.8], @o(A4,, U,) = (A, U) for all such r.

6.2. Definitions, For i = 1,---,n, let G(rn + 1,{) denote the space of
all j-dimensional affine planes in E**!, Given P € G(n + 1, i) we will write
P for the i-plane parallel to P and passing through the origin.

The group G of euclidean motions of E**! acts naturally on G(n+ 1, i),
which space also carries a natural G-invariant Radon measure. Normaliz-
ing this measure so that the set of all /-planes intersecting the unit ball has
measure a(n + 1 — i), we denote it by y(n + 1, ).

6.3. Corollary. With the hypotheses of 6.1 the other curvature measures
®;(4,), i=1,---,n+ 1, are given by

n+1 z(A U)

=B(n+1,i)” / / (—DAANED) i1y
G(n+1-i) J PNS"

—vEnor(Al’le)
-dy(n+1,0)P.
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Proof. By [4, 6.11], reach(4NP) > 0 for y(n+1,i) ae. P€ G(n+1,i);
thus the formula makes sense. The formula follows from 6.1 together with
[4, 6.13].

6.4. Inorder to apply these formulas more generally it will be necessary
to express the indices (~1)* in terms of the local topology of the height
functions and without direct reference to A. For this purpose we now give
the following “Taylor theorem” for a set 4 of positive reach.

6.5. Theorem. Let (p,v) € nor(A4) be a smooth point and let f be a
C*> function EM*! — R such that —grad f(p)/|grad f(p)| = v. Suppose
that (qx,wy) € nor(A), k =1,2,---, with

lim g =p,  lim (g —p)lgx —p|™' =7€ 8",
k—oo k—oo
and wy —v = O(|qx — p|) as k — co. Then 7 € Ty(p,v) and, as k — oo,
flax) — f(p) = LH f(P)(z, 7)lgk — PI* + 0(lgx — PI?).

Proof. Taking a subsequence if necessary, we may assume that

(W —v)/|gx — p|l — o as k — oo, so that |q, — p|~ (g — p,wi — P) —
(t,0) € T, nor(A4), which proves the first assertion.

To prove the second assertion let us leave aside the sequence {q;} for
the moment. Let 0 < r < reach(4) and let o : (—a,a) — M, be a C!
function such that

al0)=p+rv, o/0)=1+ra, |o|=|t+7ra|

where ¢ has been chosen so that (7,0) € T, nor(4). Then f:=&40ais
a lipschitzian function into 4 with

B'(0)=r1, lip(B) < (R/R —r)|t+ ra]
by [4, 4.8(8)]. Putting
yi=r'(f—a)=voa:(-a,a)— S"

we also have
(ﬂ’ ]}) . ('—aa a) i IlOI'(A), J"'(O) = g.

Let ¢ > 0O be given. Let 2 > & > 0 be so small that if |s|] < J then,
putting B(s) := s~ !(B(s) — p), we have

[B(s)—t|<e and |B(s)*>1-é.
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For 0 < 59 < § we have

F(B(so)) - f(p) = /0 * grad £(B(s)) - B'(s) ds
= | grad f(p)| / *y(s)- B(s)ds
0
4 /0 [erad £(B(s)) + | grad (2)[7(5)] - B'(s) ds.

The first integral vanishes by 5.3, and we may write the second integral as
[ terad £(p(5)) - wrad s 5) s
+lgrad £ [ o) = 01 fs)ds
= [ st o) o) + o) ds
+1grad f2) [ (50 +0(5) - ps) s
~ B H ) + [ sHr)e p0) - ds

+lerad f) [ 5+ (8(5) = ) ds + o(s)

as 5o | 0. The second and third terms are in magnitude

< so(|HF ()| + | grad £()]|o]) /0 *|B(s) — <l ds.

We estimate this last integral over the parts of [0, so], where |8/(s)— 7| < 2¢
and |f’(s) — 7| > 2¢. The former part has magnitude < 2¢s,. For the latter
part, if 0 < s < 59 < 4, then |B'(s) — 7| > 2¢ implies that | #'(s) — B(so)| > e.
Thus by Chebyshev’s inequality '

L1([0,50]1 N {5 : |B'(s) ~ | > 2¢})
< LYJ0,50]1 N {5 : |B'(s) — B(so)] > €})

<ot ([ 1) ds - solBGso)?)

< soe~X(lip(B)2 + &3 — 1),
whence

/OSO |B!(s) — 1| ds < 2esp + soe~2(lip(B) + &3 — 1) sup | B'(s) — 1|
< 50(2¢ + e~ 2(lip(B)* + &° ~ 1)(1 +lip(B))).
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Thus

|f(B(s0)) = f(p) = Haf (p)(7,7)55/2| < 55 IIHf M +grad f(p)| o))
x [2¢ + e~2(lip(B)? + &> — 1)(1 + p(B))] + o(s)-

Now let 0 < & < 3!/3, and take r € (0, R) to be so small that
|t +roX(R/R—r)?—1< &
Let us use this value of r in the discussion above. In particular,
lip(8) <[t +ro|(R/R-r) < (1+ &) < 2.
Thus |
SUHS@)]| + | grad £(0)] |o])[2¢ + e~ 2(lip(B)? + &* — 1)(1 + lip(B))]
< sF(IHf(@)]| + | grad f(p)] |o)(8e) = Cesg,
where C is a constant depending only on f, p and o, and we have
(¥) 1 (B(s0)) = £(p) — Haf (9)(z,7)5%/2] < Ces} + 0(sD).

Consider now the sequences {g;} and {wy}, and put a; := |gx —p|. We
have then gq;, — B(s;) = o(sy) and wy — v = O(sy) as k — oco. Thus by 2.2

P(5%) - (ax — B(sk)) = —o(sp),  wi - (B(sk) — k) = —o(s7)
as k — co. But in the mean time

(W —p(5K)) - (ak — Blse)) = 0(s), (v —wg) - (B(Sk) — qk) = 0(s})

as k — oo, and if we add these relations to those above we find that

v - (g — Bsx)) = 0(si)

as k — oo.
Thus if weputfor0 <t < 1

Gk (2) = tqr + (1 — 1) B(5x),
then we have ¢ (t) — p = O(sy) and

1
f(qk)—f(ﬂ(sk))=f0 grad f (i (1)) - (g — B(sk)) dt

1
= /0 [erad f(dx (1)) — grad £(2)] - (qi — B(si)) dt
— |grad f(p)|v - (gx — B(sk))

=o0(s}) ask — oo.



640 JOSEPH H. G. FU

Putting so = 51,52,... in (*) we find that
|f(ax) = f(p) — Haf (p)(1,7)s%/2| < o(s}) + Ces}.

But ¢ > 0 was chosen quite arbitrarily.
6.6. As a consequence of this last result we have
Proposition. Let p € A. Then for all small r > 0,

reach[A N B(p,r)] > 0.

Furthermore, if p is a nondegenerate critical point of h,|A, then for small
r > 0, p is the only critical point of h,|AN B(p, r) within h; ' (h,(p)).
Proof. By [4, 4.10],

Nor[4 N B(p,r),q] = {u+t(qg — p): u € Nor(4,q),t > 0}

at any point g with |g—p| = r, and by the same result reach[ANB(p,r)] > 0
provided p — g ¢ Nor(4, gq) whenever |q — p| = r. That this is the case for
all small r > 0 follows from 5.2(i).

Now suppose that the second assertion of the proposition is false. Since
p is a nondegenerate critical point of 4,4, the result of Federer quoted
above implies that there are sequences 4 > g, — p and w; € nor(4, g;)
with v - (g — p) = 0 and w; of the form

_v+ap—q)
v + ar(p — q)l

By 2.6 we have

=(1+allp~al) v +ap—ax), a>0.

a|ax — p|?
(1+ a}|qx — p>)\?

=wy - (P — gk)

—qu — p{*reach(4),

[\

whence (putting R := reach(4))
2 |ax — P2 1
% (‘ 2 ) < IR
limsupa, < 54

k—o0 2R’
it follows that |w; —v| = o(|gx — p]). Taking a subsequence we may assume
that
(g —p)/|gk —pl — 7 and (Wi —v)/|gc —p| — 0.

The hypothesis of Theorem 6.5 is now fulfilled, and we obtain
v - (g — p) = ILy(0,v)(7, T)lgk — PI*/2 + o(lgx — PI?).
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By construction we have ¢ = at for some a < 0; thus (7,ar1)
€ T, nor(A4). Since II4(p,v) is by hypothesis nondegenerate, it follows
that I14(p,v)(7,7) = a # 0. Therefore the expression above is not 0 for
large values of k, and hence we have a contradiction.

6.7. Corollary. Ifv € 8" and p is a nondegenerate critical point of h,|A
of index A, v - p = ¢, then for all sufficiently small r > 0

x[ANB(p,r) 0 hy ' (—00,¢ + X1)oe, = (1)

Jor all sufficiently small ¢ > 0.

Proof. By 4.8, for such r and & the space A4 N B(p,r) N
h;1(—o0, ¢+ ¢] has the homotopy type of X := ANB(p,r)Nh; ' (—oco,c—¢e]
with a A-cell attached. Since X has positive reach, by 4.8 and 5.1 X has
the homotopy type of a finite CW complex. Therefore the result follows
from a cellular approximation {cf. [12, p. 23]) and the long exact sequence
associated to the attachment of the A-cell to X. '

6.8. Definition. If 4 C E"*! is closed, p € A and v € §", then we put

(v, A,p) = lirr(l) lirr(l) x1ANB(p,r) N hy (o0, c + x5 _,.
r—0eg—

6.9. A set of positive reach is obviously a euclidean neighborhood re-
tract. It follows (cf. [3, VIIL.6]) that if 4, B C E**!, and reach(A4), reach(B)
and reach(A N B) are all positive, then

X(AU B) = x(4) + x(B) — x(AN B).
In view of 6.6 we have also for such A, B that for a.e. v € "
y(v,AUB,p) =1(v,4,p) + 1(v,B,p) — 1(v,AN B), p)

forallpe AUB.
Now notice that we may rewrite 6.1 as

) GV = [+ Da(n+ D1 [ (v, A pyav,
pel

with similar formulas for the ®@;, ; > 1. From this expression, together
with the additivity of i, we obtain at once

6.10. Theorem (Zdhle). Let Uy denote the class of all locally finite
unions | J;c; Ai of sets A; of positive reach in E"*, such that the intersection
Nicr Ai has positive reach for every choice of a subset I C J. Then there
is a unique extension of the curvature measures ®; from the class of sets of
positive reach to the class Upy subject to the additivity condition

D, (AUB, ) =D;(A,:)+ DB, ) ~P:(AN B, ),
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and the measures are given by the formulas
Bn+ 1,i0) @pp1_i(4,U)
/ / '(v, PN A, q)dF " v dy(n+1,i)P,
G(n+1,i) cPNSn

qGPﬁAﬁU

i =1,---,n+ 1. In particular the Gauss-Kronecker curvature measure
®y(A, ) admits the expression ().
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